Mark scheme - Forces in Action Motion with nonuniform acceleration

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
Exemplar 3 \\
\(\approx 0.016\) (2sf) \(\quad F=0.016\) \\
(c) Use your answer in (b) to calculate the drag on the ball at time \(t=0.25 \mathrm{~s}\). \\
\(0.0162=\left(1.2 \times 10^{-1}\right) \mathrm{g}-D\)
\[
\begin{aligned}
\& D=0.10152 \\
\& \approx 0.10(255)
\end{aligned}
\]
\(\qquad\) \\
This candidate has drawn a free-body force diagram to make their intention clear. From it, they know that the resultant force must equal the weight minus the drag. From there they have found the drag force.
\end{tabular} \\
\hline \multirow[b]{2}{*}{4} \& \multirow[b]{2}{*}{a} \& Total \& 4 \& \\
\hline \& \& \[
\begin{aligned}
\& \text { (resultant force }=) 4.2-0.8 \text { or } \\
\& 3.4(\mathrm{~N}) \\
\& (m=) 0.8 / 9.81 \text { or } 0.0815 \ldots(\mathrm{~kg}) \\
\& \left(a=\frac{3.4}{(0.8 / 9.81)}\right) \\
\& a=42\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
\end{aligned}
\] \& C1
C1

A1 \& | Allow 0.082 (kg) |
| :--- |
| Not 0.08 (kg) |
| Allow 2 marks for $F=3.4(\mathrm{~N}), m=0.08(\mathrm{~kg})$ and hence $a=42.5$ or 43 ($\mathrm{m} \mathrm{s}^{-2}$) |
| Examiner's Comments |
| The majority of the candidates scored full marks. Most answers showed good structure and reasoning. |
| The data is given to two significant figures (SF). Answers given to more significant figures were condoned. However, if the answer was given to one SF, then this would have been penalised once only in the entire paper. |
| Exemplar 9 |
| (b) The container is now full of water. aye equal. The string is cut and the tube accelerates vertically upwards through the water. The weight of the tube is 0.80 N and the upthrust on the tube is 4.2 N . |
| This exemplar illustrates a decent solution from a grade C candidate. |
| The physics is very easy to follow - resultant force determined, mass calculated from the weight and then the final value for the acceleration. As mentioned earlier, the answer is not given to two SF, but this was allowed in this specific question. |

\hline
\end{tabular}

	b	There is (an increasing) friction / drag (acting on the tube)	B1	Allow (water) resistance / resistive force Allow upthrust decreases as tube comes out of water AW Not 'drag and upthrust', unless the upthrust is qualified asabove
		Total	4	
5		B	1	Examiner's Comments The question requires knowledge and understanding of the forces acting on the ball in flight and resultant force. The path of the ball is shown. At \mathbf{X}, the ball is travelling in the direction shown by the \mathbf{D} arrow. The drag force will be in the opposite direction. Weight is other force acting on the ball - vertically downwards. Vectorially adding the weight and the small drag will produce a resultant in the direction shown by the \mathbf{B} arrow. The answer (key) is therefore is \mathbf{B}. The most popular distractors were \mathbf{A} and D. Exemplar 1 The right-hand side of the exemplar has the jottings of a candidate and it does help to visualise the problem. This would certainly not qualify as an acceptable answer in Section B, but here, it demonstrates excellent technique; a vertical line for the weight and a slanting line for the drag and both being added to give the dotted line for the resultant force. This matches the arrow B.
		Total	1	
6		C	1	
		Total	1	
7		C	1	
		Total	1	
8		C	1	
		Total	1	
9		B	1	
		Total	1	
$\begin{aligned} & 1 \\ & 0 \end{aligned}$		A	1	
		Total	1	
$\begin{aligned} & 1 \\ & 1 \end{aligned}$		C	1	

3.2 Forces in Action - Motion with non-uniform acceleration

	c	Line will curve / be non-linear OR (magnitude of) gradient of line decreases (with increase in time) (Line will end with) a lower maximum/final velocity or hit the ground after a longer time	B1	Allow sketch or gradient decreases / changes Not gradient is smaller / less steep / shallower / lower Allow ball will have a lower maximum/final velocity or hit the ground after a longer time) Examiner's Comments Candidates found this question challenging. Many candidates answered the question in terms of air resistance and terminal velocity. The question required candidates to explain how the graph would appear. Several candidates stated that the gradient would be smaller but did not clearly state that the gradient would decrease over time and not indicate that the line would curve. Candidates needed to also indicate that the line would indicate a lower maximum velocity at a longer time.
		Total	12	
		Drag is the same (at a certain velocity) weight is greater or resultant force is larger)	B1 B1	Allow air resistance for drag Examiner's Comments Lots of candidates described the familiar ideas involving drag increasing with speed until the drag equals the weight's magnitude. The question was constructed to be simpler than this and asks to compare the forces on the 2 balls at a given speed. The weight of the sand-filled ball is larger. The 2 balls are identical in shape so at the same speed will have the same drag force. Know what is coming! Reading through to the end of the whole question is sensible. The answer candidates gave for Question 17(d)(i) would have formed part of the answer for Question 17(d)(ii), so valuable time can be saved by planning your answers for each part.
		(TV requires) weight = drag and weight is greater Clear link to idea that greater speed gives greater drag (for same cross-sectional area)	B1	Examiner's Comments The first mark here was for the knowing that the condition for terminal velocity was required, linked to the idea of the sand-filled ball having a larger weight. The second mark was more difficult to achieve, since a clear link between increased speed and increase drag was required.
		Total	4	
2 1		Using the graph to determine at least two ratios of the amplitudes.	M1	For example: 2.5/3.0 and 2.1/2.5

	i	Correct statement matching the ratios.	A1	For example: 'The statement is correct because 2.5/3.0 $\approx 2.1 / 2.5 \approx$ constant.
	${ }^{\text {ii }}$	At time $t=0$ Oscillator has maximum speed and hence the greatest friction. (AW)	M1 A1	
		Total	4	
2	i	$\begin{aligned} & 250 \times 60=15000 \mathrm{~J} \\ & \text { energy }=\frac{15000}{0.65}=2.3 \times 10^{4}(\mathrm{~J}) \end{aligned}$	C1 A1	
	ii	$\text { drag force }=0.4 \times 6.0^{2}=14.4 \mathrm{~N}$ forward force $=$ power $/$ velocity $=$ $250 / 6.0=41.7 \mathrm{~N}$ $\text { acceleration }=\frac{41.7-14.4}{85}=0.32 \mathrm{~m} \mathrm{~s}^{-}$	C1 C1 A1	
		Total	5	
		Level 3 (5-6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence. Level 1 (1-2 marks) Limited procedure and limited measurements or limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks	B1 x6	Indicative scientific points may include: Procedure - labelled diagram - long tube - method to determine terminal velocity - check for terminal velocity - safety precaution (tray to avoid spills / gloves / clamp tube) - method to remove sphere Measurements - measurement of diameter - use micrometer / calliper to measure diameter - averages diameter - measurements to determine v, e.g. stopwatch, ruler, light gate connected to timer, detailed use of video camera - repeats experiment for same r Analysis - $r=d / 2$ - determination of terminal velocity - plot a graph of v against r^{2} - $\mathrm{K}=$ gradient. Examiner's Comments This question was the first level of response question on the paper. It involved candidates planning an investigation into the variation of

		$\begin{aligned} & \text { p.e. } / \text { second }=\mathrm{mgvsin} \theta=120 \times \\ & 9.81 \times 5 \times \sin \theta \\ & \text { extra power }=200(\mathrm{~W}) \\ & \text { so } \sin \theta=1 / 29.4 \text { giving } \times=29 \mathrm{~m} \end{aligned}$	C1	allow force downhill $\mathrm{F}=\mathrm{mgsin} \theta$, extra power $=\mathrm{Fv}$
			C1 A1	
		Total	9	
	i	weight $/ W /$ $m g$ anddownward arrow upthrust $/ U$ andupward arrow drag/D/ friction andupward arrow	B1 B1 B1	Allow labels used in (c)(i) throughout Ignore arrow sizes. Allow '(water) resistance' for drag Examiner's Comments The forces referred to by name in module 3 of the specification are weight, drag, upthrust. tension, normal contact force and friction. Candidates should be aware that the three relevant forces in this example are upthrust, weight and drag (with friction as an acceptable alternative). A wide range of other options were provided by candidates, such as gravity, buoyancy, lift, pressure, impulse and air resistance, none of which were acceptable.
		Resultant force decreases (with time or as cylinder descends) Upthrust remains constant / drag decreases (as speed decreases) / resultant force is upwards / At lowest point, drag is zero At lowest point, resultant force is upwards	B1	Allow 'At lowest point, upthrust > weight' Note: Any incorrect answer from the list will not score this point Not 'resultant force $=0$ ' Note: Resultant force is always upwards' scores B1×2 Examiner's Comments Examiners would like to see an improvement in the understanding of the forces acting on objects in motion as this item on resultant forces was not answered well. A large proportion of candidates misunderstood the scenario, believing it to be a terminal velocity problem. This meant that many responses included the notion that the block would speed up and eventually have zero resultant force acting upon it. In this case, that would mean that the block would continue at constant velocity downwards rather than return to the surface. This item prompted the candidates by asking about the resultant force at the lowest point of the motion, which tying in with the ideas in previous parts of the question about density and floatation, should have hinted that the resultant force at the lowest point was upwards. Those candidates that did realise this often contradicted themselves to ensure an upwards resultant at the bottom of the motion. Typically, this was by stating, incorrectly, that the upthrust or the drag increased, at which point only one mark was possible.
		Total	6	

